Large clinical cohort undergoing simultaneous single nucleotide and copy number variant analysis reveals broad mutation spectrum and high diagnostic yield for neuromuscular disorders

Emily Decker, MS LCGC
Invitae
Declaration of Conflict of Interest

<table>
<thead>
<tr>
<th>Type</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment full time / part time</td>
<td>Invitae</td>
</tr>
<tr>
<td>Ownership interest (stock, stock-options, patent or intellectual property)</td>
<td>Invitae</td>
</tr>
</tbody>
</table>
Background

- Molecular genetic testing used to
 - confirm clinical diagnoses
 - identify subtype
 - inform management and prognosis

- Corroborated in several small studies

- Analysis of intragenic copy number variation (CNV) is now possible, enabling evaluation of its contribution to neuromuscular disorders.
Objective

To examine a large unselected cohort of individuals with a range of neuromuscular disorders and report the:

- Diagnostic yield with simultaneous sequencing and CNV analysis
- Mutation spectrum and properties
- Reclassification of variants of uncertain significance (VUS)
Methods

▪ Gene Panel Design
 – Phenotype-specific gene panels were curated based on the:
 • strength of evidence supporting the association between a gene and a disorder
 • differential diagnosis

▪ Next-generation sequencing (NGS)
 – Non-exome based NGS panels
 – Simultaneous identification of single-nucleotide variants (SNV), short and long indels, exon-level CNVs, and structural arrangements disrupting coding sequences, including SMN1

▪ Subjects and Reporting
 – Unbiased cohort of patients suspected to have a neuromuscular disorder
 – Analysis and reporting of variants according to validated SHERLOC
Results
Results

- Diagnostic genetic testing for 25,356 individuals
 - Aged <1-96y, mean 43y
 - 45% female

- Definitive molecular diagnosis
 - 5,055 of 25,356 individuals received a positive results
 - Overall diagnostic yield of 20%
 - Single gene tests
 - CMT1A 38%
 - DMD/BMD 37%
 - SMA 21%
Results

- Classification of variants
 - 33,551 variants classified as LP/P or VUS
 - 84% SNV
 - 6% indels
 - 10% CNVs – most in SMN1, PMP22, DMD
 - 7% of clinically-significant CNVs were in 77 other genes
 - 113 diagnoses
 - all of which were intragenic
 - 1,328 LP/P CNVs identified in AR conditions
 - 30 in compound heterozygous state with a non-CNV variant
 - 856 present in homozygous state
Results

- **Testing patterns**
 - Positive results from broader panel
 - SMN1 (7%)
 - DMD (49%)
 - PMP22 (62%)

- **Rare genetic cases**
 - 200 of 2,501 individuals received a molecular diagnosis in a gene related to, but not suspected based on, their clinical diagnosis
 - 16% of patients would have been missed with single gene analysis alone
 - 25% of males with suspected DMD had the etiology of a different gene
 - 19% related to neuromuscular disorder not muscular dystrophy
Results

- Variants of uncertain significance
 - 25,356 individuals carried 25,762 VUS
 - 17,321 unique variants in 266 genes
 - Reported one or more VUS in 53% of individuals
 - range 1-13
 - mean=1.9; median=1
 - Follow-up family studies were able to re-classify 2%
 - 158 to LP/P and 198 to LB/B
 - Most commonly by demonstrating *de novo* inheritance
Discussion
Discussion – diagnostic yield

- NGS-based panel testing with simultaneous sequence and CNV detection can provide a diagnosis for 4-33% of affected patients
 - faster, less expensive with better coverage than exome as a first line test

- Clinically well-recognized conditions can have a mild or uncharacteristic phenotype
 - SMA, DMD/BMD, CMT1A were all diagnosed through single gene testing AND broader panels

- Differential diagnosis supported by NGS panels
 - 8% positive from a broad panel after initial testing was negative
 - 133 suspected to have DMD/BMD had a molecular diagnosis in a gene unrelated to muscular dystrophy
Diagnostic yield by panel shown by percentage of definitive positive results
Discussion – importance of CNV detection

- Intragenic CNVs are an important contributor to pathogenic variant burden
 - 39% of all positive results included a CNV
 - 80% of unique CNVs included a few exons
 - 77 non-common genes contained LP/P intragenic CNVs
 - Confirmed 30 individuals as compound heterozygote including CNV

- 113 individuals identified who would otherwise have been invisible using traditional sequencing methods or exome (typically without intragenic CNV)
 - cost and time savings
Contribution of CNVs to diagnostic yield where the percentage of LPV/PV are sequence (green) or CNV (blue) based on panel.
Discussion – reclassification of VUS

- Complexities of interpretation of variants in the long list of genes associated with neuromuscular disorders

- Most VUS identified as a single heterozygous allele in AR conditions

- VUS in genes associated with AD conditions with high penetrance were more likely to be reclassified as LP/P

- Segregation studies provided useful evidence for pathogenicity in 48% of VUS
 - *de novo* status in AD conditions
 - *trans* phase in AR conditions
Thank you

emily.decker@invitae.com