Expanded genetic testing for primary immunodeficiencies: Findings from a 207-gene next-generation sequencing panel

ΙΝΥΙΤΛΕ

Jennifer Holle, MS, Christy Hartshorne, MS, Shiloh Martin, MD, PhD, Britt Johnson, PhD, Karen Ouyang, PhD Invitae, San Francisco, CA

BACKGROUND

- Many primary immunodeficiencies (PIDs) share overlapping presentations, complicating the clinical diagnosis
- Expanded next-generation sequencing panels are valuable in facilitating the diagnosis of patients with PIDs

RESULTS

- During the studied period, 260 patients underwent genetic testing with the 207-gene PID panel.
- The average turnaround time from test requisition to return of results was 18 days.
- The vast majority (96%) of patients had variants identified

RESULTS

63 patients had positive findings (Figure 5):

- 35% (22) were heterozygous carriers of AR conditions
- 38% (24) were heterozygous for variants in genes with AR

due to their ability to test many genes at once

We developed a 207-gene next-generation sequencing panel inclusive of copy number variation analysis for the clinical diagnostic testing of patients with PIDs (**Figure 1**).

Primary pane	l (207 genes)
--------------	---------------

ACD	ACP5	АСТВ	ADA	ADA2	ADAM17	ADAR	AICDA
AIRE	AK2	AP3B1	ATM	B2M	BCL10	BLNK	BLOC1S6
ВТК	CARD11	CARD14	CARD9	CASP10	CASP8	CD247	CD27
CD3D	CD3E	CD3G	CD40LG	CD79A	CD79B	CD8A	CEBPE
CHD7	CIITA	CLPB	СОРА	CORO1A	CR2	CSF2RA	CSF3R
CTC1	CTLA4	CTPS1	CTSC	CXCR4	СҮВА	CYBB	DCLRE1B
DCLRE1C	DKC1	DNMT3B	DOCK2	DOCK8	ELANE	EPG5	FADD
FAS	FASLG	FERMT3	FOXN1	FOXP3	FPR1	G6PC3	GATA2
GFI1	HAX1	ICOS	IFIH1	IFNGR1	IFNGR2	IGLL1	ІКВКВ
IL10	IL10RA	IL10RB	IL12B	IL12RB1	IL17F	IL17RA	IL17RC
IL1RN	IL21	IL21R	IL2RA	IL2RG	IL36RN	IL7R	IRAK4
IRF7	IRF8	ISG15	ITCH	ITGB2	ITK	JAGN1	JAK3
LAMTOR2	LCK	LIG4	LPIN2	LRBA	LYST	MAGT1	MALT1
MAP3K14	MEFV	MOGS	MVK	MYD88	NBN	NCF2	NCF4
NFAT5	NFKB2	NFKBIA	NHEJ1	NHP2	NLRC4	NLRP12	NLRP3
NOD2	NOP10	ORAI1	PARN	PGM3	PIK3CD	PIK3R1	PLCG2
PMS2	PNP	POLE	PRF1	PRKCD	PRKDC	PSMB8	PSTPIP1
PTPRC	RAB27A	RAC2	RAG1	RAG2	RBCK1	RFX5	RFXANK
RFXAP	RHOH	RMRP	RNASEH2A	RNASEH2B	RNASEH2C	RORC	RTEL1
SAMHD1	SEMA3E	SH2D1A	SH3BP2	SLC29A3	SLC35C1	SLC37A4	SLC7A7
SMARCAL1	SP110	SPINK5	STAT1	STAT2	STAT3	STAT5B	STIM1
STK4	STX11	STXBP2	TAP1	TAP2	ТАРВР	TAZ	ТВК1
TCN2	TERC	TERT	TICAM1	TINF2	TLR3	TMC6	TMC8
TMEM173	TNFRSF13B	TNFRSF13C	TNFRSF1A	TNFRSF4	TNFSF12	TPP2	TRAF3
TRAF3IP2	TREX1	TRNT1	TTC7A	TYK2	UNC13D	UNC93B1	UNG
VPS13B	VPS45	WAS	WIPF1	XIAP	ZAP70	ZBTB24	

Figure 1. Genes included on the 207-gene Invitae Primary

- in one or more genes tested (Figure 2).
- P/LP variants were identified in 24% of patients (63) (Figure 2).
- Multiple variants of uncertain significance were identified in most patients (Figure 3).

Figure 2. Total patients tested by result type.

Figure 3. Number of variants of unknown significance per patient.

Seventy-four pathogenic or likely pathogenic (P/LP) variants were identified, over 10% of which were copy number variations (Table 1, Figure 4).

Figure 5. Clinical context of P/LP variants

and AD inheritance patterns, in which the positive finding may or may not explain the patient's phenotype

- 30% (19) had likely genetic diagnoses (see methods)
- 6 patients had results in more than one category.
- 63% percent of genetic diagnoses were for conditions that are treatable with HSCT (Table 2):

Genetic result	Associated condition	HSCT considered?	Source (PubMed)
CTLA4: p.Tyr140* (het)	Autoimmune lymphoproliferative syndrome	No	PMID:2188
CD40LG: p.Thr254Lys (hemi)X-linked hyper-IgM syndromeRNASEH2B: p.Ala177Thr (het)Aicardi Goutieres syndrome 2 (carrier)		Yes N/A	PMID:1643
CYBB: c.1315-1G>A (hemi) NLRP12: p.Leu880GInfs*15 (het)	Chronic granulomatous disease Familial cold autoinflammatory syndrome	Yes No	PMID:2301 PMID:2445
DCLRE1C: p.Asp451Lysfs*11 (homo)	Severe combined immune deficiency	Yes	PMID:1180
IFNGR1: c.373+2T>C (homo)	Mendelian susceptibility to mycobacterial disease	Yes	PMID:1671
IL2RG, c.855-1G>A (hemi)	Severe combined immunodeficiency	Yes	PMID:1180
IRAK4: p.Gly75Alafs*14 (het) IRAK4: c.717-1G>T (het)	IRAK-4 deficiency	No	PMID:2173
IRAK4, Deletion (Exons 10-12) (homo) MVK: p.Val377lle (het)	IRAK-4 deficiency Mevalonate kinase deficiency (het for AR/AD gene)	No	PMID:2173
IRAK4: p.Gln293* (het) IRAK4: p.Glu30* (het)	IRAK-4 deficiency	No	PMID:2173
NFKB2: p.Arg853* (het)	Common variable immunodeficiency	Yes	PMID:2559
NFKB2: p.Arg853* (het)	Common variable immunodeficiency	Yes	PMID:2559
PIK3CD: p.Glu1021Lys (het)	Activated PI3K-delta syndrome	Yes	PMID:2784
PRF1: p.Thr450Met (het) PRF1: p.Gly45Arg (het)	Familial hemophagocytic lymphohistiocytosis 2	Yes	PMID:1223
BLOC1S6: p.Gln78* (het)	Hermansky-Pudlak syndrome 9 (carrier)	N/A	
PRKCD: c.788-2A>G (het) PRKCD: p.Gly361Arg (het)	PRKC delta deficiency	No	PMID:2754
RAG1: p.Lys992Glu (het) RAG1: p.Lys277Arg (het)	Severe combined immunodeficiency	Yes	PMID:1180
RMRP, n5delins17 (het) RMRP, n.181G>C (het)	Cartilage-hair hypoplasia-anauxetic dysplasia spectrum	Yes	PMID:2037
RMRP: n.147G>A (het) RMRP: n.257_266del (het)	Cartilage-hair hypoplasia-anauxetic dysplasia spectrum	Yes	PMID:2037
STAT3: p.Met329Lys (het)	STAT3 gain of function	Not typically	PMC:47908
XIAP: p.Arg222* (hemi)	X-linked lymphoproliferative syndrome 2 (XLP2) Netherton syndrome (carrier)	Yes N/A	PMID:1590

METHODS

- NGS testing was performed as previously described,¹ and variant interpretation was carried out based on an expansion of the ACMG guidelines.²
- De-identified results of patients tested between April and October of 2017 were reviewed and categorized by variants identified and their classifications:
- Negative: no reportable variants identified
- Positive: Pathogenic/Likely Pathogenic variants (P/LP)
- Uncertain: Variants of Unknown Significance (VUS)
- Of note, increased risk alleles, such as common *NOD2* alleles associated with Crohn's disease, were excluded.
- Positive results were further categorized as follows:

Likely genetic diagnosis	Carrier status	Heterozygous results
1 heterozygous P/LP allele in AD or XL gene	1 heterozygous allele in AR gene	1 heterozygous allele in a gene with AR and AD inheritance
	1 heterozygous allele in XL gene in	

Gene	Variant	Zygosity
CORO1A	Deletion (Entire coding sequence)	Heterozygous
DOCK8	Duplication (Exons 2-9)	Copy number 3
DOCK8	Deletion (Exon 1)	Heterozygous
IRAK4	Deletion (Exons 10-12)	Homozygous
LRBA	Deletion (Exons 36-41)	Heterozygous
RAB27A	Deletion (Exons 2-4)	Heterozygous
SAMHD1	Duplication (Exons 7-11)	Copy number 3
ТМС8	Deletion (Exon 11)	Heterozygous

Table 1. Pathogenic/Likely Pathogeniccopy number variations identified.

Figure 4. Pathogenic/Likely Pathogenic variants by variant type.

CONCLUSIONS

deletions 8.1% duplications

- Expanded next-generation sequencing panels offer an effective tool to aid in the rapid molecular diagnosis of patients with PIDs.
- Detection of copy number variations with multigene panels is critical, as CNVs represented 10% of nethogonic variants identified by our panel

1 homozygous P/LP allele in AR gene	female			
1 hemizygous P/LP allele in XL gene				
in male				
2 heterozygous P/LP alleles in AR				
genes				
1 heterozygous P/LP allele and 1 VUS				
in AR genes				
 Clinical actionability of results was estimated based on published recommendations for treatment with hematopoietic stem cell transplantation (HSCT). 				

pathogenic variants identified by our panel.

 In total, 24% of patients had positive findings, and a likely genetic diagnosis was made in 30% of these cases. Importantly, 63% of conditions diagnosed are treatable with HCST. Of note, the diagnostic yield observed here is likely lower than it would be in an unselected population of patients with PIDs; individuals with clear phenotypes may have been tested with single gene assays or targeted panel tests.

References: 1. Lincoln SE, Kobayashi Y, Anderson MJ *et al*. A systematic comparison of traditional and multigene panel testing for hereditary breast and ovarian cancer genes in more than 1000 patients. *J Mol Diagn*. 2015;17(5):533-44.

2. Nykamp K, Anderson M, Powers M et al. Sherloc: a comprehensive refinement of the ACMG variant classification criteria. Genet Med. 2017;19(10):1105-17.

Disclosures: All of the authors are stockholders in and employees of Invitae.