New systematic rubric for clinical interpretation of copy number variants (CNVs) improves interpretation consistency across laboratories

Daniel Pineda Alvarez1, Erin Rooney Riggs2, Erica Andersen2, Athena Cherry3, Sibel Kantarci1,0, Hutton Kearney2, Ankita Patel2, Gordana Racic3, Deborah Ritter4, Sarah South1, Erik Thorland1, Swaroop Aradhya1, Christa Lese Martin2. On behalf of the ACMG/ClinGen Copy Number Variant Interpretation Guidelines Working Group.

1) Invitae, San Francisco, California; 2) Geisinger Health System, Lewisburg, PA; 3) ARUP Laboratories, Salt Lake City, UT; 4) Stanford University, Palo Alto, CA; 5) Mayo Clinic, Rochester, MN; 6) Columbia University Medical Center, New York, NY; 7) Baylor College of Medicine, Houston, TX; 8) Children’s Hospital of Los Angeles, Los Angeles, CA; 9) Ancestry.com, San Francisco, CA; 10) Quest Diagnostics, San Juan Capistrano, CA.

Introduction

Analysis of CNVs by chromosomal microarray analysis (CMA) is the first-tier genetic test in patients with neurodevelopmental disorders and/or multiple congenital anomalies. In addition, due to advancements in microarray and sequencing technologies, CNVs are now being analyzed at higher resolutions extending down to single-exon CNVs, extending their clinical scope to gene panels and whole exome sequencing.

Despite the existence of CNV interpretation standards from ACMG and mounting evidence from laboratories analyzing CNVs, inconsistencies in clinical interpretation persist due to differences weighing evidence used for classification.

In an effort to improve consistency, the ACMG and the Clinical Genome Resource (ClinGen) established a collaboration to update the existent CNV classification guidelines with a more standardized clinical classification framework.

CNV clinical interpretation rubric

<table>
<thead>
<tr>
<th>Benign</th>
<th>LB</th>
<th>VUS</th>
<th>LP</th>
<th>Pathogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>-5</td>
<td>0</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

- **Genomic content**
- **Toward Benign**: Overlap with benign region
 - No genes in region
- **Toward Pathogenic**: Overlap with established haplinsufficiency/regressive region/gene/regulatory region
 - Protein truncation (frame-shift)
 - Disruption of a protein coding gene

- **Published literature and databases**
- **Toward Benign**: Reported in the general population not associated with disease
 - Statistically associated with disease (Case v. Controls)
- **Toward Pathogenic**: Strong segregation
 - Statistically significant association with disease (Case v. Controls)
 - Moderate segregation, presence in case with specific phenotype
 - Weak segregation, reported in case with unspecified phenotype, variant reported de novo

- **Number of genes involved**
 - >50 genes
 - 34-49 genes
 - 15-34 genes

- **Inheritance and family history**
- **Toward Benign**: Variant is inherited from an unaffected parent
- **Toward Pathogenic**: Variant is de novo
 - Variant is inherited from an affected parent

Testing of the metric

Thirty three (33) deletions and 28 duplications with defined clinical classifications from clinical laboratories were used to test the performance of the metric. All CNVs were evaluated independently by 2 geneticist. Fourteen (14) deletions and 8 duplications of the total of CNVs evaluated were also evaluated with the existing guidelines. Concordance between both rubrics was calculated.

Deletion metric

When the new rubric was used for evaluation of loss CNV, the concordance among reviewers significantly improved. Of the total number of evaluations (n=66), in 80%, the calculated clinical interpretation was deemed appropriate by an expert panel, 11% differed by a single-step classification difference (LP vs VUS or VUS vs LB), and 4% were confidence differences (P vs LP, LB vs B and vice versa).

Duplication metric

Testing of the duplication metric is in progress. Preliminary data show that when the new rubric was used for evaluation of gain CNV, the concordance among reviewers was high, but did not improve. Of the total number of evaluations (n=62), in 90%, the calculated classification was deemed appropriate by an expert panel, and 8% differed by a single-step classification.

Conclusion and future direction

- We devised a systematic framework for clinical interpretation of discrete CNV events, which is expected to have broad impact by providing a robust system to support the consistent interpretation across clinical laboratories.
- This rubric will be tested with a broader group of clinical laboratory geneticists to identify nuances and refine its guidance.

Disclaimers and funding

- ClinGen is primarily funded by NHGRI through the following three grants: U41 HG006834-01A1, U01 HG007437-01, U01 HG007436-01, and also receives support from NCI (contract: HHSN26120080001E) and NICHD.
- This work is in progress, and has not yet been reviewed or approved by the American College of Medical Genetics and Genomics’ (ACMG) Board; ACMG has no formal or established position on the conclusions of this work at this time.