Introduction

The 2013 ACMG policy statement recommended 56 genes for the return of incidental findings but noted that this list will, and should, evolve. Catalyzed by accelerating advances in clinical genomics, we generated an expanded gene list where pathogenic variants would be considered clinically actionable.

We reviewed the ACMG56 list, the ACMG Working Group process, and expanded gene lists published by multiple genomics groups. An expert panel of genetic counselors and medical and clinical geneticists reviewed the clinical actionability of individual genes beyond the ACMG56 using criteria such as penetrance, mode of inheritance, and the availability of published medical management recommendations.

Our novel list of 124 clinically actionable genes includes the ACMG56 plus 17 conditions (24 genes) with increased risk for a cancer-related phenotype, three conditions (38 genes) with increased risk for a cardiovascular-related phenotype, and two conditions (6 genes) with increased risk for other medically actionable disorders, all of which have published guidelines for medical management.

The ACMG policy statement addresses variantic pathogenics discovered by diagnostic whole-exome or whole-genome sequencing (WES or WGS). WES/WGS is increasingly available to healthy individuals seeking to proactively inform their healthcare. The high cost and mostly uninterpretable results of these broad tests are obstacles for integration into routine healthcare. A focused gene panel restricted to clinically actionable variants presents an opportunity for healthy patients to partner with their healthcare providers for preventive genetic testing with significant potential to inform personalized medical care. This can significantly impact current clinical genetics practices and necessitate the development of new models for clinical genetic counseling. With decreasing costs and growing interest in this type of information, the transition from what are considered incidental findings to primary findings represents a novel opportunity for genetic information to be introduced into routine medical practice, which in turn can lead to increased clinical utilization for the preventive care of patients.

Background

- Since the 2013 ACMG guidance, clinical WES and WGS have reported incidental findings in healthy individuals (typically from the ACMG56 gene list).
 - Typically, these are healthy parents or other family members sequenced as a trio in support of an affected proband.
 - In 20 to 1 in 50 of these healthy individuals with no indication for WES/WGS receive a medically important result.
- There is a rapidly growing interest in broad access to genetic information.
 - Decreasing DNA sequencing costs are making genetic information more accessible and pushing it further into mainstream healthcare.
 - Healthy adults are beginning to proactively seek medically relevant information to inform their long-term healthcare.
- Most of the data generated from WES/WGS is not interpretable or applicable for healthy individuals.
 - Difficult to integrate meaningfully into routine healthcare.
 - In a healthy context, the focus should be on medically actionable findings.
- We focused on developing a medically actionable next generation sequencing-based gene panel for healthy individuals.

Developing a medically actionable panel

- Established an internal team of ABMGG-certified clinical and medical geneticists (MDS and PhDs), genetic counselors and PhD scientists.
- Evaluated multiple sources for clinically-relevant genes to consider adding:
 - Gene lists published by multiple groups since the 2013 ACMG guidance.
 - Private and publicly funded genomics initiatives.
 - Broadening of already represented clinical conditions from the ACMG56.
- Additional conditions deemed medically important.
- Used similar criteria to the 2013 ACMG guidance for inclusion considered.
 - Penetration, inheritance, management recommendations.

Developing a medically actionable panel

- The ACMG56 gene list is the foundation for this medically actionable panel.
- The ACMG56 gene list includes cancer and cardiovascular-related conditions.
- We identified an additional 68 medically actionable genes that are within the same clinical areas as the ACMG56 gene list.

ACMG56 gene list

- Cancer-related genes
 - APC
 - BRCA1
 - BRCA2
 - MEN1
 - MSH2
 - MSH6
 - PALB2
 - CDH1
 - CDK12
 - CDH1
 - CDK4
 - CDKN2A
 - ATM
 - BAP1
 - BIRC5
 - BRIP1
 - CDK7
 - CDH1
 - CDK4
 - CDKN2A
 - ACTN3
 - ACTC1
 - APOB
 - CXXM1
 - DGKG
 - DSP
 - FBN1
 - GLA
 - C5
 - MYLK
 - MYLX
 - PCSK9
 - PIK3R1
 - PRKAR2A
 - RYR2
 - SCNA
 - SMAD5
 - TGFBR1
 - TGFBR2
 - TMBIM3
 - TNNT2
 - TPM1

Cancer-related genes

- Cardiovascular-related genes
 - SMAD5
 - TGFBR1
 - TGFBR2
 - TMBIM3
 - TNNT2
 - TPM1

Cardiovascular-related genes

- Gene counselors and providers.

Additional 68 genes

- Cancer-related genes
 - ATM
 - BAP1
 - BIRC5
 - BRIP1
 - CDK7
 - CDH1
 - CDK4
 - CDKN2A
 - ACTN3
 - ACTC1
 - APOB
 - CXXM1
 - DGKG
 - DSP
 - FBN1
 - GLA
 - C5
 - MYLK
 - MYLX
 - PCSK9
 - PIK3R1
 - PRKAR2A
 - RYR2
 - SCNA
 - SMAD5
 - TGFBR1
 - TGFBR2
 - TMBIM3
 - TNNT2
 - TPM1

Cardiovascular-related genes

- Other genes
 - ATM
 - BAP1
 - BIRC5
 - BRIP1
 - CDK7
 - CDH1
 - CDK4
 - CDKN2A
 - ACTN3
 - ACTC1
 - APOB
 - CXXM1
 - DGKG
 - DSP
 - FBN1
 - GLA
 - C5
 - MYLK
 - MYLX
 - PIK3R1
 - PRKAR2A
 - RYR2
 - SCNA
 - SMAD5
 - TGFBR1
 - TGFBR2
 - TMBIM3
 - TNNT2
 - TPM1

Cardiovascular-related genes

- Other genes
 - ATM
 - BAP1
 - BIRC5
 - BRIP1
 - CDK7
 - CDH1
 - CDK4
 - CDKN2A
 - ACTN3
 - ACTC1
 - APOB
 - CXXM1
 - DGKG
 - DSP
 - FBN1
 - GLA
 - C5
 - MYLK
 - MYLX
 - PIK3R1
 - PRKAR2A
 - RYR2
 - SCNA
 - SMAD5
 - TGFBR1
 - TGFBR2
 - TMBIM3
 - TNNT2
 - TPM1

Reference