Copy number variation in clinical tests for inherited cardiomyopathies and arrhythmias

Jackie Tahiliani, Nicole Johnson, Sienna Aguilar, Amy Daly, Emily Decker, Blanca Herrera, Daniel Beltran, Laura Murillo, Rachel Harte, John Garcia, Stephen Lincoln, Eden Haverfield, Swaroop Aradhya
Invitae, San Francisco, CA

Abstract

Introduction: The clinical significance of exon-level copy number variation (CNV) in inherited cardiovascular conditions has not been widely studied to date. Sequence changes make up the vast majority of reported pathogenic variants in genes associated with inherited cardiomyopathies and arrhythmias.

Methods: We considered a sequential series of 287 patient samples submitted for an arrhythmia panel, 370 for a cardiomyopathy panel, and 36 for both panels. Germline DNA from blood was tested, and the gene panels were selected by ordering physicians based on each patient’s clinical indication. Sequence and CNV analyses were performed with validated Next Generation Sequencing (NGS) methods, and identified CNVs were confirmed with microarray analysis.

Results: Six single- or multi-exon deletions were identified in patient samples: two deletions in MYBPC3 in two unrelated patients presenting with hypertrophic cardiomyopathy, two RYR2 deletions in two unrelated patients presenting with arrhythmia, a PKP2 deletion in a patient presenting with arrhythmogenic cardiomyopathy, and a CTNNA3 deletion in a patient presenting with cardiomyopathy. With the exception of CTNNA3, all deletions were classified as pathogenic, and no other pathogenic variants were identified in these individuals.

Conclusions: Previously, CNV analysis for these genes was unavailable clinically or was offered as a reflex test. In this case series, CNVs accounted for approximately 4% of the positive findings, which suggested that CNV analysis may be a key component of genetic testing for inherited cardiomyopathies and arrhythmias in the future.

Results

Six single- or multi-exon deletions were identified in the patient samples:
- two deletions in MYBPC3 in two unrelated patients presenting with hypertrophic cardiomyopathy
- two RYR2 deletions in two unrelated patients presenting with arrhythmia
- one PKP2 deletion in a patient presenting with arrhythmogenic cardiomyopathy
- one CTNNA3 deletion in a patient presenting with cardiomyopathy

Variants described in the pathogenic RYR2 exon 3 deletion:
- This variant is a gross deletion of the genomic region encompassing exon 3 of the RYR2 gene and leads to an in-frame deletion, preserving the integrity of the reading frame.
- Deletions that encompass exon 3 of the RYR2 gene have been reported in individuals affected with noncompaction cardiomyopathy and catecholaminergic polymorphic ventricular tachycardia and have been shown to segregate with the disease in families (3–6).
- Experimental studies have shown that this in-frame deletion changes the channel properties of RYR2 by markedly reducing the luminal Ca²⁺ release terminates (7).

CNV analysis via NGS

Invitae uses a proprietary, validated algorithm to detect deletions and duplications with NGS. The algorithm calls exonic deletions and duplications by calculating the statistical likelihood of each copy number state through comparison of the depth of sequence coverage at targeted exons to depth measured from a set of baseline samples (8).

All reported deletions or duplications are confirmed with alternative methods of analysis.

Conclusion

In this case series, CNVs accounted for approximately 4% of the positive findings. Overall, CNVs were observed in 6 of 693 (0.86%) patient samples sent for a cardiomyopathy panel, an arrhythmia panel, or both. These results are consistent with the findings of previous studies. Although CNVs do not account for a majority of causal variants for these indications, their contributions are of value when pursuing a molecular diagnosis.

These results suggest that CNV analysis is an important component of genetic testing for inherited cardiomyopathies and arrhythmias. Because improvements in technology have rapidly changed the genetic testing process, the cost of CNV analysis should no longer be considered a significant barrier to testing.

References