Traditional vs. next-generation panel testing of hereditary breast and ovarian cancer genes in a large clinical population

Stephen E. Lincoln
Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing

Tom Walsha, Silvia Casadeia, Ming K. Leea, Christopher C. Pennilb, Alex S. Norda, Anne M. Thorntona, Wendy Roeba, Kathy J. Agnewb, Sunday M. Straya, Anneka Wickramanayakeb, Barbara Norquistb, Kathryn P. Penningtonb, Rochelle L. Garciac, Mary-Claire Kinga,1, and Elizabeth M. Swishera,b,1

• 360 patients
• Ovarian, fallopian or peritoneal cancer
• Unselected for age of onset or family history
• 17.5% BRCA1/BRCA2 positive
• 6.1% Non-BRCA positive

Invitae-Stanford pilot study

- 198 patients met NCCN guidelines for BRCA testing
 - Age of onset, family history, Ashkenazi background, or other factors
 - Most with breast cancer
 - Some with ovarian cancer (Fx also pancreas, prostate, colon)
 - Enriched for BRCA positives to aid in sensitivity analysis

- 141 BRCA negative

- 10 of 141 (7.1%) non-BRCA positive
 - Reported results, management changes for some of these patients
 - Additional 5 of 141 (3.6%) MUTYH heterozygotes

Case study
Cancer

Frequency of Mutations in Individuals With Breast Cancer Referred for BRCA1 and BRCA2 Testing Using Next-Generation Sequencing With a 25-Gene Panel

Nadine Tung, MD1,2; Chiara Battelli, MD1; Brian Allen, MS3; Rajesh Kaldete, MS3; Satish Bhatnagar, PhD4; Karla Bowles, PhD5; Kirsten Timms, PhD6; Judy E. Garber, MD7; Christina Harold, MD1,2; Leif Ellisen, MD, PhD2,8; Jill Krejdosky, MS9; Kim DeLeonardis, MS9; Kristin Sedgwick, MS5; Kathleen Soltis, MA9; Kathleen Soltis, MA9; Benjamin Roa, PhD5.

ORIGINAL RESEARCH ARTICLE

Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients

Holly LaDuca, MS1,2, AJ Stuenkel, MS1, Jill S. Dolinsky, MS1, Steven Keiles, MS1, Stephany Tandy, MS1, Tina Pesaran, MA, MS1, Elaine Chen, MS1, Chia-Ling Gau, PhD1, Erika Palmaer, BA1, Kamelia Shoapour, BS1, Divya Shah, MS2, Virginia Speare, PhD1, Stephanie Gandomi, MS1 and Elizabeth Chao, MD1,3

ARTICLE

Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes

Laurent Castérin1,2, Sophie Krieger1,2,3, Antoine Rousselin1, Angéline Legros1, Jean-Jacques Baumann1, Olivia Bruet1, Baptiste Braault1, Robin Fouillet1, Nicolas Goardon1, Olivier Letac1, Stéphanie Baert-Desurmont2,4, Julie Tinat2,4, Odile Bera5, Catherine Dugast6, Pascaline Berthet7, Florence Polycarpe7, Valérie Layet6, Agnes Hardouin1,2, Thierry Frébourg2,4,9 and Dominique Vaur4,1,2
Prevalence of mutations in a panel of breast cancer susceptibility genes in BRCA1/2-negative patients with early-onset breast cancer

Inherited Mutations in 17 Breast Cancer Susceptibility Genes Among a Large Triple-Negative Breast Cancer Cohort Unselected for Family History of Breast Cancer

Questions about clinical multi-gene tests

1. Can next-generation sequencing (NGS)-based panel tests replace traditional tests in terms of sensitivity, specificity, and completeness?
 - Including copy-number changes?
 - Complex variants?

2. Can laboratories without large, proprietary databases interpret variants in ways comparable to a lab that uses one?
 - What is the impact of the new ACMG guidelines for interpretation of sequence variants?

3. What additional variants are found by comparison with traditional testing?
 - Is it directly relevant to the patient’s indication?
 - Is it clinically actionable?
 - Is additional uncertainty a burden on patients or clinicians?
Questions about clinical multi-gene tests

1. Can next-generation sequencing (NGS)-based panel tests replace traditional tests in terms of sensitivity, specificity, and completeness?
 - Including copy-number changes?
 - Complex variants?

2. Can laboratories without large, proprietary databases interpret variants in ways comparable to a lab that uses one?
 - What is the impact of the new ACMG guidelines for interpretation of sequence variants?

3. What additional variants are found by comparison with traditional testing?
 - Is it directly relevant to the patient’s indication?
 - Is it clinically actionable?
 - Is additional uncertainty a burden on patients or clinicians?
Questions about clinical multi-gene tests

1. Can next-generation sequencing (NGS)-based panel tests replace traditional tests in terms of sensitivity, specificity, and completeness?
 - Including copy-number changes?
 - Complex variants?

2. Can laboratories without large, proprietary databases interpret variants in ways comparable to a lab that uses one?
 - What is the impact of the new ACMG guidelines for interpretation of sequence variants?

3. What additional variants are found by comparison with traditional testing?
 - Is it directly relevant to the patient’s indication?
 - Is it clinically actionable?
 - Is additional uncertainty a burden on patients or clinicians?
Questions about clinical multi-gene tests

1. Can next-generation sequencing (NGS)-based panel tests replace traditional tests in terms of sensitivity, specificity, and completeness?
 - Including copy-number changes?
 - Complex variants?

2. Can laboratories without large, proprietary databases interpret variants in ways comparable to a lab that uses one?
 - What is the impact of the new ACMG guidelines for interpretation of sequence variants?

3. What additional variants are found by comparison with traditional testing?
 - Is it directly relevant to the patient’s indication?
 - Is it clinically actionable?
 - Is additional uncertainty a burden on patients or clinicians?
Questions about clinical multi-gene tests

1. Can next-generation sequencing (NGS)-based panel tests replace traditional tests in terms of sensitivity, specificity, and completeness?
 - Including copy-number changes?
 - Complex variants?

2. Can laboratories without large, proprietary databases interpret variants in ways comparable to a lab that uses one?
 - What is the impact of the new ACMG guidelines for interpretation of sequence variants?

3. What additional variants are found by comparison with traditional testing?
 - Is it directly relevant to the patient’s indication?
 - Is it clinically actionable?
 - Is additional uncertainty a burden on patients or clinicians?
Silver standards

Sanger sequencing and capillary electrophoresis

- Are certainly not perfect, but...
- Can detect some variants that are hard for next-generation sequencing
 - Larger insertions/deletions, homopolymer-associated, complex changes

Microarrays, qPCR, MLPA for CNVs

- Work well when probe binding sites are not disrupted
29 gene hereditary cancer panel

<table>
<thead>
<tr>
<th>Sub-panel</th>
<th>Genes</th>
<th>Total</th>
<th>Gene names</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1/BRCA2</td>
<td>2</td>
<td>2</td>
<td>BRCA1, BRCA2</td>
</tr>
<tr>
<td>Other high-risk breast/ovarian</td>
<td>4</td>
<td>6</td>
<td>CDH1, PTEN, STK11, TP53</td>
</tr>
<tr>
<td>moderate-risk breast/ovarian</td>
<td>6</td>
<td>12</td>
<td>ATM, BRIP1, CHEK2, NBN, PALB2, RAD51C</td>
</tr>
<tr>
<td>Lynch Syndrome</td>
<td>5</td>
<td>17</td>
<td>EPCAM, MLH1, MSH2, MSH6, PMS2</td>
</tr>
<tr>
<td>Other hereditary cancer syndromes</td>
<td>11</td>
<td>28</td>
<td>APC, BMPR1A, SMAD4, CDK4, CDKN2A, PALLD, MET, MEN1, RET, PTCH1, VHL</td>
</tr>
<tr>
<td>MUTYH</td>
<td>1</td>
<td>29</td>
<td>MUTYH</td>
</tr>
</tbody>
</table>
Expanded study

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Description</th>
<th>Previous testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective clinical</td>
<td>735</td>
<td>Prospective clinical cases</td>
<td>Clinical testing for BRCA1/BRCA2; occasionally on other genes (depending on case) using traditional methods</td>
</tr>
<tr>
<td>High-risk clinical (total 327)</td>
<td>209</td>
<td>Retrospective cases from a clinical biobank, generally containing higher-risk individuals</td>
<td>Clinical single-site testing</td>
</tr>
<tr>
<td></td>
<td>118</td>
<td>Cases referred due to known pathogenic variant in family</td>
<td></td>
</tr>
<tr>
<td>Reference samples</td>
<td>36</td>
<td>Reference samples from public biobanks</td>
<td>Samples carrying known pathogenic variants</td>
</tr>
<tr>
<td>Well-characterized genomes (WCGs)</td>
<td>7</td>
<td>Reference samples from public biobanks with high-quality whole genome sequencing (WGS) data</td>
<td>Variants in 29 cancer genes extracted from WGS data; most benign</td>
</tr>
<tr>
<td>Total</td>
<td>1105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analytic concordance vs. traditional methods

Previous testing; independent confirmation (combined)

<table>
<thead>
<tr>
<th></th>
<th>Variant present</th>
<th>Variant not present</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant detected</td>
<td>750 true positives</td>
<td>0 false positives</td>
<td>100% specificity</td>
</tr>
<tr>
<td>Variant not detected</td>
<td>0 false negatives</td>
<td>Sequence: 15.0 million true negative base-pairs</td>
<td>100% sensitivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNV: 22.2 thousand true negative exons</td>
<td></td>
</tr>
</tbody>
</table>
Variants selected for analytic validation study

<table>
<thead>
<tr>
<th>Type</th>
<th>Variants</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single nucleotide variants (SNVs)</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td>Sequence deletions <10 base-pairs</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Sequence insertions <5 base-pairs</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Sequence insertions ≥5 base-pairs</td>
<td>4</td>
<td>24, 5 bp</td>
</tr>
<tr>
<td>Sequence deletions ≥10 base-pairs</td>
<td>9</td>
<td>126, 40, 19, 15, 11 bp</td>
</tr>
<tr>
<td>Complex variants</td>
<td>6</td>
<td>Delins, haplotypes, homopolymer-associated¹</td>
</tr>
<tr>
<td>Single exon deletions</td>
<td>9</td>
<td>BRCA1, BRCA2, MSH2, PMS2</td>
</tr>
<tr>
<td>Single exon duplications</td>
<td>4</td>
<td>BRCA1, MLH1</td>
</tr>
<tr>
<td>Deletions of multiple exons or whole gene</td>
<td>10</td>
<td>BRCA1, MSH2, RAD51C</td>
</tr>
<tr>
<td>Duplications of multiple exons or whole gene</td>
<td>6</td>
<td>BRCA1, BRCA2, NBN, SMAD4</td>
</tr>
<tr>
<td>Total</td>
<td>750</td>
<td></td>
</tr>
</tbody>
</table>

Some published validation studies have few, if any, examples of these relatively challenging classes of variation.²,³

¹ MSH2:c.942+3A>T
A significant fraction of the pathogenic variants in clinical cases are challenging for next-generation sequencing.

Pathogenic and likely pathogenic variants (n=260) among the clinical cases (n=1062) by variant type
How to get to 100% sensitivity and specificity with next-generation sequencing?

No single answer. No single approach.

Biochemistry

- **Multiple target enrichment approaches** together
 - Fill in poorly covered regions.
- Optimize protocols to make raw data **highly callable**
 - Even and reproducible coverage
 - Measure remaining variability with in-batch controls.

Bioinformatics

- **Good aligner** (= computationally expensive)
- **Multiple callers**, each good at different things
Bioinformatics pipeline

The whole is greater than the sum of the parts.

- **NovoAlign or BWA-MEM**
 - GATK Unified Genotyper
 - Freebayes
 - Read-depth analysis
 - Split-read analysis
 - CoalGen

Outputs:
- SNVs, indels
- Del/dup events
- Homopolymer-associated variants
Next-generation sequencing read-depth profiles

- **Read depth varies** between targets, due to both the targeting chemistry and next-generation sequencing itself.

- However, **relative coverage is reproducible**, allowing copy number changes to be detected by a comparison of a patient’s result to a panel of **in-batch controls**.
Example: BRCA1 exon 19 deletion

These are *raw unprocessed data*. After processing, this signal is even more clear.
Split-read signals in next-generation sequencing

Example of a deletion

Reference genome

Deleted region

NGS read
BRCA2: c.9203del126

Split-read signal at 5’ end of deletion

Split-read signal at 3’ end of deletion

Exon target
BRCA1: c.1175_1214del40

- Deletion mapped correctly in a fraction of reads
- Split-read signature in additional reads
BRCA2 c.156_insAlu

Split-read signal of Alu sequence
SMAD4 whole-gene duplication (CN=3)

- Novel pseudogene, no introns
- Exon targets
- Split-read signal at edge of exon in one-third of reads

Same

Same

Same
MSH2:c.943+3T>C

25bp poly-A
Questions about clinical multi-gene tests

1. Can next-generation sequencing (NGS)-based panel tests replace traditional tests in terms of sensitivity, specificity, and completeness?
 - Including copy-number changes?
 - Complex variants?

2. Can laboratories without large, proprietary databases interpret variants in ways comparable to a lab that uses one?
 - What is the impact of the new ACMG guidelines for interpretation of sequence variants?

3. What additional variants are found by comparison with traditional testing?
 - Is it directly relevant to the patient’s indication?
 - Is it clinically actionable?
 - Is additional uncertainty a burden on patients or clinicians?
Interpretation concordance

Previous BRCA1/BRCA2 testing

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Uncertain</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>188</td>
<td></td>
<td></td>
<td>188 (19.3%)</td>
</tr>
<tr>
<td>Uncertain</td>
<td>2</td>
<td>30</td>
<td>8</td>
<td>787 (80.7%)</td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td>1</td>
<td>746</td>
<td>785 (80.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>190 (19.5%)</td>
<td>785 (80.5%)</td>
<td></td>
<td>975 (100%)</td>
</tr>
</tbody>
</table>

Net result concordance: 99.8% (973/975 cases)

Uncertain reports: 4.1% (40/975 cases) vs. 3.2% (31/975 cases)
Accumulation of new variants requiring interpretation

Our current rate: 0.3–0.6 variants per patient
Questions about clinical multi-gene tests

1. Can next-generation sequencing (NGS)-based panel tests replace traditional tests in terms of sensitivity, specificity, and completeness?
 - Including copy-number changes?
 - Complex variants?

2. Can laboratories without large, proprietary databases interpret variants in ways comparable to a lab that uses one?
 - What is the impact of the new ACMG guidelines for interpretation of sequence variants?

3. What additional variants are found by comparison with traditional testing?
 - Is it directly relevant to the patient’s indication?
 - Is it clinically actionable?
 - Is additional uncertainty a burden on patients or clinicians?
Pathogenic variants in 1105 individuals

<table>
<thead>
<tr>
<th>Gene</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>119</td>
</tr>
<tr>
<td>BRCA2</td>
<td>79</td>
</tr>
<tr>
<td>PTEN</td>
<td></td>
</tr>
<tr>
<td>TP53</td>
<td>2</td>
</tr>
<tr>
<td>CDH1</td>
<td>4</td>
</tr>
<tr>
<td>STK11</td>
<td></td>
</tr>
<tr>
<td>PALB2</td>
<td>5</td>
</tr>
<tr>
<td>CHEK2</td>
<td>5</td>
</tr>
<tr>
<td>ATM</td>
<td>9</td>
</tr>
<tr>
<td>BRIP1</td>
<td>1</td>
</tr>
<tr>
<td>RAD51C</td>
<td>3</td>
</tr>
<tr>
<td>NBN</td>
<td></td>
</tr>
<tr>
<td>MLH1</td>
<td>1</td>
</tr>
<tr>
<td>MSH2</td>
<td>2</td>
</tr>
<tr>
<td>MSH6</td>
<td>2</td>
</tr>
<tr>
<td>EPCAM</td>
<td></td>
</tr>
<tr>
<td>PMS2</td>
<td>4</td>
</tr>
</tbody>
</table>

High-risk breast/ovarian

<table>
<thead>
<tr>
<th>Gene</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td></td>
</tr>
<tr>
<td>BMPR1A</td>
<td></td>
</tr>
<tr>
<td>SMAD4</td>
<td></td>
</tr>
<tr>
<td>CDK4</td>
<td></td>
</tr>
<tr>
<td>CDKN2A</td>
<td>1</td>
</tr>
<tr>
<td>PALLD</td>
<td></td>
</tr>
<tr>
<td>MET</td>
<td></td>
</tr>
<tr>
<td>MEN1</td>
<td></td>
</tr>
<tr>
<td>RET</td>
<td></td>
</tr>
<tr>
<td>PTCH1</td>
<td></td>
</tr>
<tr>
<td>VHL</td>
<td></td>
</tr>
<tr>
<td>MUTYH</td>
<td>23</td>
</tr>
</tbody>
</table>

Moderate-risk breast/ovarian

Lynch Syndrome

Other cancers
Clinical relevance

• For 80% of non-BRCA positives, the patient’s cancer and/or family history was consistent with the known effects of the gene they carried.
 – Even when the proband did not present with a canonical tumor type

• However, in many of these cases the patient would not have been tested for that gene under current guidelines.

• The other 20% of patients could have:
 – Rare pleiotropic effects
 – Incomplete family histories
 – Cancers unrelated to their genetics (with the possibility of a linked cancer in their future)
<table>
<thead>
<tr>
<th>Intervention Warranted based on gene and/or risk level</th>
<th>Recommend MRI(^c) (>20% risk of breast cancer(^d))</th>
<th>Recommend RRSO</th>
<th>Discuss Option of RRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, PTEN, STK11, TP53</td>
<td>BRCA1, BRCA2, Lynch syndrome(^e)</td>
<td>BRCA1, BRCA2, CDH1, PTEN, TP53</td>
<td></td>
</tr>
</tbody>
</table>

| Insufficient evidence for intervention\(^b\) | BARD1, BRIP1 | BARD1, BRIP1, PALB2, RAD51C, RAD51D | ATM, BARD1, CHEK2, PALB2, STK11 |

\(^b\) Intervention may still be warranted based on family history or other clinical factors.

\(^a\) Other genes may be included in multi-gene testing.

\(^b\) Intervention may still be warranted based on family history or other clinical factors.

\(^c\) See NCCN Guidelines for Breast Cancer Screening and Diagnosis.

\(^d\) May be modified based on family history or specific gene mutation.

\(^e\) See NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal.
Preliminary observations for non-BRCA findings

Clinical actionability

- **55%** of the non-BRCA findings would warrant consideration of a *change in care for the patient.*
 - Under current medical guidelines
 - Over and above actions, based on family history alone
 - Specific recommendations varied considerably.

- **70%** of the non-BRCA findings would warrant consideration of a *change in care for positive family members.*
 - Thus, family member testing is indicated.

For details: Ellisen, *et al.* ASCO Meeting. 2015 (June).
Conclusions

1. Next-generation sequencing can equal performance of traditional methods.
 - But not “out of the box”
 - Takes a lot of work

2. It is possible to produce similar interpretations.
 - As some big established labs with proprietary data
 - In most cases

3. Expanded panels tests have clinical relevance and clinical utility.

All data have been deposited to the ClinVar database.
Acknowledgements

Stanford Medicine
- Jim Ford
- Allison Kurian
- Meredith Mills

Massachusetts General Hospital
- Leif Ellisen
- Andrea Desmond
- Michelle Gabree
- Kristen Shannon

• Steve Lincoln
• Yuya Kobayashi
• Michael Anderson
• Shan Yang
• Kevin Jacobs
• Josh Paul
• Geoff Nilsen
• Federico Monzon
• Scott Topper
• Swaroop Aradhya
• Jon Sorenson
• Martin Powers