Traditional vs. Next-Generation Testing of Hereditary Breast and Ovarian Cancer Genes in a Large Clinical Population

Stephen Lincoln1, Allison Kurian2, Andrea Desmond3, Yuya Kobayashi2, Michael Anderson1, Meredith Mills2, Kerry Kingham1, Nicolette Chun4, Michele Gabree3, Kristen Shannon2, Geoffrey Nelsen3, Kevin Jacobs5, Shan Yang2, Federico Monzon2, James Ford1, and Leif Ellisen1

1Invitae, San Francisco, CA, 2Stanford University, Stanford, CA, 3Massachusetts General Hospital, Boston, MA

Introduction

Background: Next Generation Sequencing (NGS) is gaining clinical acceptance, although questions remain about the sensitivity, specificity and clinical implications of these tests. Expanding on our recently published work (Kurian et al., J Clin Oncol, 2014) we considered whether NGS-based panel testing can both replace and supplement traditional BRCAl/2 testing.

Methods: Over 1000 patients indicated for assessment of hereditary breast/ovarian cancer risk under NCCN guidelines were recruited and tested with a 215-gene NGS panel. In this poster we focus on variants detected in 29 known cancer risk genes. For comparison, most of these patients also previously had traditional clinical genetic testing from an established independent lab. In addition we supplemented the study with 43 reference samples having known (and often technically challenging) variants in these cancer risk genes.

Prevalence: As expected, 9% of our Clinical Referral cohort carried a pathogenic variant in BRCAl or BRCAl/2. 4% had a pathogenic variant in another cancer risk gene, and most of these were found in moderate penetrance genes or Lynch syndrome genes (even though there was no selection in this study for colon or endometrial cancer). Another 2.5% were heterozygous MUTYH carriers. A higher fraction of our History-Enriched Cohort was positive for high penetrance genes.

Variant Types: Challenging variants for NGS (e.g. large indels and single-exon CNVs) were rare (0.05% of all variants) but represent a significant fraction (~10%) of the pathogenic variants, underscoring the importance of accurate methods to call these events.

Sensitivity and Specificity: 750 variants were selected for analytic validation from those detected either previously or by the NGS panel. We included all pathogenic variants, all large indels, all CNVs, and a sampling of VUS and benign variants. In spite of the challenging variants included, the NGS panel data had 100% concordance with the traditional (Sanger, qPCR, array) data.

Clinical Results

Variant Classification: We used a point-based system consistent with the 2014 draft ACMG/AMP/CAP guidelines for interpretation of sequence variants, and we used only broadly available and not proprietary resources in this classification. Nevertheless, for BRCAl/2 we find that our variant interpretations are substantially concordant with those from the previous tests where a large, proprietary database was used by the previous testing lab.

Clinical Impact: We are now completing detailed chart reviews of these patients and, preliminarily, we see the following results for the non-BRCA positives:

- Phenotype: In most cases (80% to date) the patient’s cancer or family history was consistent with known effects of the mutant gene they carry, suggesting that these findings are not incidental. The other 20% could have rare pleiotropic effects, incomplete family histories, or cancers unrelated to their genetics (with the possibility of a linked cancer in their future).
- Actionability: In most cases (70% to date) the non-BRCA findings would warrant consideration of a change in care under current medical guidelines.
- Counseling and Acceptance: In patients who consented to return of these results, genetic counseling has proven both feasible and appreciated by the patients in spite of the increased uncertainties (e.g. unclear risk levels and increased prevalence of variants of unknown significance) that result from broad genetic testing vs. BRCA-only testing.

Conclusions

NGS can be a viable replacement for traditional genetic testing for hereditary cancers and other syndromes, with the additional benefit of cost-effectively increasing diagnostic yield in a clinically actionable manner.

Orthogonal confirmation of clinical NGS results remains a strongly recommended practice, although the high concordance of traditional and NGS data that we observe suggests that the benefit of confirmation merits careful consideration over time.

Acknowledgements: We thank Andrew Schultz and Devika Salunke for sample processing; Curtis Kautzer, Michael Kemenner, Dan Kvitek, and Angela Chou for data generation; and John Garcia, Blanca Herrera, Yuan-Yuan Ho, Keith Nylkamp, Nila Patil, and Janita Thuesberg for variant interpretation.

Technical Methods: Detection of CNVs from Clinical NGS Data

We used a combination of read-depth and split-read analysis to detect CNVs and found that these approaches tend to complement each other. Events detected by split-read analysis are often those that are hard for read-depth approaches (they also can be similarly hard for traditional methods). Examples include CNVs that start or end in the middle of an exon. Laboratory techniques to minimize coverage variability and to quantify remaining variability have proven critical to achieving high sensitivity and specificity for small (1-2 exon) deletions and duplications.

Data Release

The variants observed in this study and their clinical interpretations have been submitted to ClinVar.